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Abstract—A coordinate perturbation approach is used to deal with the asymptotic behavior of
damage in the region very near the tip of a static mode I crack in creeping solids. Like Part 1, the
damage effect here is also incorporated into the power-law viscous creep constitutive equations by
using the strain equivalence principle and the evolution of the cumulative damage is described by
the multi-axial Kachanov—Rabotnov kinetics equation. The equation derived poses a nonlinear
eigenvalue problem which has to be solved by numerical approaches. The solution obtained enables
one to realize how the damage has effect on the crack tip field and what manner stresses vary with
when the crack tip is quite closely approached. Exampiles are given to illustrate the distributions of
stresses, strains and damage. © 1997 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In Part [ of this context (Lee ef al., 1996) the authors worked out a procedure to analyze
the effect of damage in the field near a crack tip, where a small damage condition holds.
The solution obtained in that study is featured in a HRR singularity with the damage as a
perturbation, and it does not apply to the regime where the crack tip is quite approached
and large damage occurs therein. As is known, the HRR singularity contains a certain
anomaly which predicts infinite stresses at the crack tip. However, the singularity field does
not persist all the way if more factors are taken into account. For example, within the
consideration of large deformation, the crack tip will be blunted because of large strains,
which reduces the stress substantially. In fact, one of the components of stress, g,,, must
vanish rather than going to infinity as the blunted crack tip is a free surface (McMeeking
and Parks, 1979). On the other hand, according to continuum damage mechanics concept,
a rupture process of media is related to a certain damage behavior and the ultimate state
of damage is the local, or even global, fracture of a body. For materials with a stationary
crack in creeping and undergoing cumulatively damaging, there exist two competing effects
around the crack tip, one is the stress concentration tendency arising from the singularity
of stress and another is the stress relaxation caused by damage. In the absence of the
damage effect, analyses lead to a stress singularity and this case has been investigated in
the pioneering literature for power-law creep law materials (see, Hutchinson, 1968 ; Rice
and Rosengren, 1968 ; Riedel and Rice, 1980). However, while damaging phenomena take
place in a material, they will result in the relaxation of stresses. The greater the stresses are,
or the longer the loading duration is, the larger the damage becomes and the larger damage
will in turn reduce the stresses significantly. It is to be expected during such a coupling
process that the damage has great effect on the stress singularity of a cracked body and
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even, as shown later in the context, when the damage involved reaches its critical value
(say, a damage measure reaches unity) at the crack tip and a complete fracture failure
occurs. In this case stresses are relaxed to vanishing. Following such an idea, Li ez al. (1988)
and Bassani and Hawk (1990), for instance, used numerical procedures to analyze the
influence of the damage on the crack tip field while several other researchers (e.g. Gao,
1986, 1995), based on some theoretical models, give analytical estimations to damage field
around the crack tip.

In this paper we use a coordinate perturbation approach to study the stress and strain
distribution analytically in the limiting case in which the region concerned is very near the
crack tip where damage is very severe. From the analytic structure of the asymptotic
solution one can realize how the damage material constants dominate the crack behavior
of the medium and, therefore, attain a pattern reflecting the transition from a partially
damaged state to a complete failure, namely, fracture of the medium, in a time dependent
field around a static crack in creeping materials.

As in part 1, since analysis, including the instantaneously elastic effect, is beyond the
scope of what we are currently able to do, our attention is limited to the case in which creep
damage has the dominant effect.

We first list all the governing equations and the corresponding initial and boundary
conditions in Section 2 and an asymptotic form is proposed in Section 3. In this section
coordinate perturbation expansion is conducted based on the asymptotic form and the
corresponding asymptotic equations are subsequently derived. An example, the first-order
approximation, is given in detail. Results are shown in Section 4 and discussion is held on
them. Remarks and notes are made in Section 5.

2. GOVERNING EQUATIONS AND INITIAL AND BOUNDARY CONDITIONS

For a mode I crack problem under the plane stress condition, if designating a polar
coordinate system (r, §) with & = 0 directly ahead of the crack and the origin at the crack
tip, the fundamental equation can be proposed as follows.

2.1. Stress function

¢ d(1é¢g 1ép 12%°¢
099267’ Gre=~—5<;%>, 0":‘};“674-72602, (1
where ¢ denotes the Airy stress potential and ¢;; (i,j = r, 0) are the stresses.
2.2. Compatibility equation
et S e (%)= @

where ¢; (i,j = r,0) label strains and a dot over them indicates the derivative with respect
to time, 1.€.

€. 3)

2.3. Constitutive equations
Neglecting the effect of elasticity, the power-law viscous creep materials coupled with
damage can be described as (Lee et al., 1996 for details)
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where B and » are material coeflicients dependent on temperature,  is a damage variable,
s;; (i,j = r, 0) represent the deviatoric stresses and & indicates the equivalent stress defined
as

¢ =[5+ 65— 0,05 +305]*. o
2.4. Damage evolution law
For a creeping material the cumulative damage evolution law can be described by the

Kachanov—Rabotnov equation (e.g. Kachanov, 1986 ; Rabotnov, 1969 ; Hayhurst, 1972
and Chaboche, 1988a, b)

dw ¥(o) I L
O [7] (1-w) 6]

or its integral form

o= 1—{1—(k+1) J [%“)}dr} ©)

2(0) = 2Jo(0) + BJ1(0) + (1 —2— )</ J2(0), (10)

in which

where, J, = g, represents the principal stress, J, = tro indicates the hydrostatic stress
and J, = 1/2 s, is the second invariant of deviatoric stresses, while 4, u, k, « and f are
material constants. Here, 4 > 0 and u > 1 (see Kachanov, 1986). Particularly, when p = &,
eqn (8) will lead to the earlier form of the Kachanov damage evolution law. Besides,
experimental data show that for many ductile materials such as aluminum etc., 2 = 0 and
f =~ 0 (Hayhurst, 1972).

As is shown, the damage model (8) leads to an accumulative effect with time going by
and finally will result in complete failure after undergoing a critical time duration, say, the
rupture time 7 (note that f¢ is a loading, also temperature and geometry dependent
parameter in practice), namely,

j](l — o)t do = J[%'—]T dr, an

which leads to

(k+1)r [%T ~1 (12)

0

provided that ¥[o] does not vanish identically. Thus, the damage evolution law (9) can be
alternatively written as
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e n 1/k+1
w=1—{(k+l)J [@} dr} . (13)

The 1nitial condition is that a load is applied suddenly to the cracked specimen at the
time ¢ = 0. Since we are concerned with the creep damage, the elastic effect which leads to
an instantaneous response of the material will be ignored.

Boundary conditions are prescribed on the traction-free crack faces, ng; = 0 (n, = nor-
mal vector on the crack face) and at infinity.

3. LOCAL FORM OF AN ASYMPTOTIC SOLUTION

Since our consideration is to the local asymptotic solution in the zone very near the
crack tip, it is proposed, following a coordinate perturbation procedure that the solution
takes such a form

S0, =1, 3 Pén(.0), (14)

m=0

where s is an undetermined constant. Substitution of (14) into (1) one is left with

o

ou(r, 0,0 =17 ) (m+s)(s+m—1)¢,(6, N, (15)
m={0

Go(r,0,0) = —r? i (s+m—1)¢,. (8, )r", (16)

0.0 = P S (-5 (6. )+ G0, D] a7

Since at the crack tip the medium is supposed to be completely damaged and thereby
cannot sustain stresses in accordance with the concept of damage mechanics, we then have

!1}};}1 O’l/ = O (19] = 1’2)’ (18)

which obviously require that
5> 2. (19)

In the following discussion for convenience let
1 e 2 " bl
L0, =3 2. [m+5)29,(0, )+ (0, H]r (20
m=0

and

o
2

L(r,0,t) = {|: i {(m+5),,(0, 1)+ ¢, (0, t)]r’”j|-+ |: i [(m+s)(m+s— 1), (6, t)]r’"]

m=0

3

- i [(p+5)(p+s—DI(g+5)9,0, )+ 30, D1, (0, )]

p=04¢=0

(=1

)
2

+3|: i (s+m—1)¢,.(0, t)r"‘} } | . (21)

m=0



A tensile crack in creeping solids

Thus, we can denote that
J(r, 0,0 =r"21,(0,10

&(r, 0,0 = r21,(r,0,0).
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(22)

23)

It can be easily shown through inserting eqns (15)—(17) into eqn (10) and using the

expressions of (22) and (23) that the damage evolution law can be rewritten as
w(T,0,1) = 1 — (k4 1)VF-1 g-wktlppls=Dk+1Q(r 6, 1)

where

e 1 m 1jk+1
Q(r7 07 t) = {J |:B[l (I‘, 97 T) + %(1 _ﬁ)lz(”a 9’ f):| df} -
From the relation
| S ..
§; = 0y— gakkoé,, (i,j,k=r0)
and substituting eqns (15)—(17) into eqn (26) we have

1

Spp(r,0,1) = 5’)‘2/\99(", 6,1,
1

Srﬂ(ra 63 t) = grbizl\r(-)(r’ 93 t)y

1
srr(r’ 69 t) = E’J72Arr(", 9, [),
where
Ay = Z [(m+5)(2s+2m—3)d,,(0, ) — DL (0, D],
m=0

Aw= =33 (s+m—Dg,0,0r,
m=0

A, = Z [(m45)(3— m— ), (0, 1) + 2008, D).

Thus, for eqns (4)—(6) one has

éee(r, 9’ l) — %B(k+ 1)7n/’k+1Anw’k+1rn(s—2)(l —uik+ l)Agg(r, 9, 1)127 1 (r’ 0’ l) [Q"(r, 9’ l)]7 I ,
g-ro(r, 0’ [) — %B(k—f— 1)-nx’k+1Anu/’k+lrn(.t72)(l — ik + I)Aru(r, 0, t)IQ* 1 (V, 0, [) [Q”(r, 0, l)]7 1 ,

&, (r,0,0) = %B(k+ )=kl gkt Lpnts= DA —wk+ DA (r 6 N4 (r, 0, )[Q"(r,0,0)] ",

letting

24

(25)

(26)

@7

(28)

(29)

(30)

(3D

(32)

(33)

(34)

(33)
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ng(r, 9’ t) = ABG(re 9& t)Ig l(r, 9’ Z)[Qn(ra Gs t)]~ ! ’ (36)
rr@(r: 09 l) = ArG(r: 6’ [) I’2'“ : (r’ ga l)[Qn(’,’ 09 t)] ! ’ (37)
L, (r,0.0) = A, (r. 0,013 (r, 0, D[Q"(r, 0, 0] ", (38)

and expanding eqns (36)—(38) into the Taylor series with respect to , one has

Too(r, 0,1) = TW(0, )+ T (0, )r + 2T (0, Or* +, .., (39)

Lo(r, 0,0 = TQ0, 0+ TPO0, 0)r+3T3 0, 0r +...., (40)

[ 0,0 =TL0,0+TP 0, 0r+ 5020, 0 +, ... (41)
Correspondingly,

Eap(r, 0, 1) = S Bk + 1) 7iH ! gk Lyt -k 1)

[T O, )+ T O, Hr+ LT 0, 0r* +,.... ), 42)

b1, 0, 1) = L B(k 4 1) 771 grwies =20 ks

[P0, )+ T, t)r+,, e, nr+,...], (43)

£ (r,0, 1) = L B(k 4 1) 4! 4wk e X1 ks

(CP@, 0 +T(8, t)r+ 20,07 +,...]. (44)
Substitution of eqns (42)—(44) into eqn (2) yields

1 &? 1
57{rv“[ 50,0+ T O, 0r+ 5 T O.0r +, }}
¥ or-

b

¢ { [I’ﬁ?’(@ H+T00, Hr+ = 1”‘”(0,!)1'2—%,...,}}

r* 002
10 [ o (1) I o
= o, 0+, t)r+ 1“,, @, 0r+,...,
i1 9 e (1) ! 2)
F 30 o (0, 0+T (9,t)r+2'1“ O, 0 +,...,|>=0, (45)
in which
k+1

Vo n(s—2)<l _ L) (46)

Equalizing the terms with the same order power, we have
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I:v(v+l)r(°’(0 1) — 0, t)—2(v+1) .0+ 5r<°)(9 z)J
+|:(v+2)(v+1)1"§,},)(6, 0=+ DOPO.)=20+2) 5 r$},>(9 n+ C; T, z)]

+%[(v+2)(v+3)1"(2’(9 N—(v+2)I P, t)—2(v+3) '3, t)+f1“(2)(0 Z)}

+,....,=0, 47)

such that

a

v(v+ DY O, 1) — v O (0, t)—2(v+1) 9@, )+ 56 o, =0, (48)

2

(+2) 0+ DI 6,0~ 0+ DI (0.0 = 20+2) 55 rgg)(a 0+~ 0 TO@,1) =0, (49)

2

2

18
—(v+2)(v+3)r<2>(9 t)—f(»+2)l“(2)(0,z) (v+3)AI"(”(0 )+—6fr<°’(9, fH=0. (50)

In this way, we obtain a series of asymptotic equations. Letting
h.0,1) = p,, (00,00, m=0,1,2,..., (51
the asymptotic equations (48)—(50) can be reduced to a family of ordinary differential
equations with the time-dependent functions {p,(¢)} remaining undetermined.

Based on the decomposition (51) for ¢,,(6, 1), for the first-order approximation (48)
one has

RO()]Q O {v(y+ 1) P, [0, (0)] —vP, [0 (0)]}

d )
=204+ 1) 15 (P (OO R" O (9)]Q ™[O, (0)]]

2

IR"'[@(0)]Q "' [Ou(0)]} =0, (52)

in which
= [s(3—5)0,+20¢], (53)
= [s(25—3)0, — O], (54a)
P, =[(3-3503], (54b)

R = {[s0, + 7> +[s(s = 1)@ ]* —s(s— 1)@ [s@, + O] +3[(s— O]’} %, (55)

Q= {ﬁ[szﬁ)o +0;— + LR} (56)

ﬁR} NG

and the stresses are
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g’ (. 0, 1) = po ()" *[s(s— 1)@, (B)].
03’ (.0, 1) = po ()7’ ~*[(s — 1O, (B)],
0y, (r,0,1) = po ()" ~*[s0,(6) + O (B)].

From eqn (13) one can obtain the damage distribution

w = 1_A—u/k+l(k+1)1,/k+1|:J

t

t Uk+1
(o (D))" dr} s DEEIQO)(0),

where
Qv (0) = [ﬁl‘l‘”(f)) ¥ %a —ﬁ)lam(e)}”k“
in which
10(6) = 90, () + ©4(0)
and

19(6) = {[s©o(8) + O (0)]> + [s(s — 1) O, (D]
—5(s—1)[s@(0) +O5(0)]O,(0) + (s — O, ()]} 2.

Correspondingly, in terms of eqns (33)—(35) the strains can be found to be

1 , ,

é%(r, 9’ t) — 5 B(k+ 1)7n,/k+ 1 Anu/k+lrn(s—2)(l —ptk+ ”A};%) (9) [1(20)(9)]"7 1 [Q(O) (6)]-—n’
1 ,

ér()(r’ 9’ t) — EB(k_l_ I)An//k-&—lAmu/k-ﬁ- 1 rn(s—2)(1 —utk+ I)Agg)(g) [1(20)(0)]n— 1 [Q(O)(Q)]—n’

1 , , _ ,
é(l’, 0’ l) — 5B(k_l_ 1)—n,k+ lAnu,kJr 1 rn(s—2)(l A#/k+l)A$9)(9) [1(20)(6)111— 1 [Q(O)(g)]—n’

where
AR (0) = 5(25—3)0,(0) — 5 (D),
AL(6) = —3(s— 1O (0),

AD(B) = s(3—5)0, +20(6).

(57)
(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)
(68)

(69)

Starting from eqn (49) one can obtain the second-order approximation and following
the same procedure higher-order approximations can also be arrived at. The corresponding

boundary conditions are as follows

0,(0) = 07(0) =0, ©,(n)=0,Lm) =0, m=0,1,2,3,...,.

(70)

The time-dependent functions {p,(7)}, which depend upon the applied loading and
the geometry of cracked body, cannot be obtained merely by virtue of the present asymptotic
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analysis and a global solution is needed to determine it rigorously. Obviously, since it seems
impossible to get a global analytical solution for the problem described by eqns (1)-(6). an
approximate estimation of them or some numerical results are expected to be useful.

4. RESULTS AND DISCUSSIONS

Note that the constant s has remained undetermined so far. In fact, s is an eigenvalue
which depends upon the material constants n, & and u and is designed by the nonlinear
equation (52) and the boundary conditions (70) (when m = 0). It can be easily thought of
that the energy condition

1
lim oy, — O(r>’ ()

which has been extensively utilized by many researchers, could be invoked in this case.
Combining (71), (15)—(17) and (33)—(35), one obtains

w N\
s:2-[1+11<1—]m):| . (72)

The relationship (72) provides a possible explicit form to determine one of the eigenvalues
for our problem. However, whether the eigenvalue resolved by eqn (72) is a physical
solution in the present case needs to further examine it. Towards this end, it can be seen
from eqn (72) that there are three categories of s for which the stress field may differ
substantially, namely,

>0,
LY 3
1 - = 7
st 2 .
<0.
For the first case of eqn (73), it leads to
1
u<—k+1)n+1), (74

and correspondingly s < 2. From eqns (15)—(17) we can see that stresses then have a
singularity with the order O(1/r*), where /. = [ +n(1 —g/k+1)]~". Obviously, in this case
both stresses and strains will go to infinity when r approaches zero. This result is, however,
contradictory to eqns (18) and (19) which reflect such a physical fact that a fully failed
material mesovolume cannot sustain any loading and the stresses should vanish. Hence,
this result is not what we require.

In the second case of eqn (73), the result will lead to some non-zero finite stress and
strain components at the crack tip (note that the condition can be realized only when n —
oo or u— oo, whilst the former corresponds to the perfect-plasticity condition and the
latter makes no practical sense). This situation does exist for a blunted crack tip since a
free surface is therein created. However, since in this context no blunting concept is
introduced and the crack tip remains a mathematical point, it is obviously unacceptable
with a multi-value distribution of stresses and strains at a point. Thus, to make our solution
be meaningful both mathematically and physically, this case can also be ruled out of our
consideration.

Apparently, only the third case of eqn (73) could yield a result that satisfies the basic
requirement designated by eqns (18) and (19). However, from great deal of numerical trials
we found that the eigen equation (52), together with its corresponding boundary conditions,
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either only gives a trivial solution or results in greatly unstable calculations so that no
solution can be obtained in this case.

We thus concluded that the tip energy condition (71) does not apply to our current
analysis, as the eigenvalue s determined by eqn (72), which can only be available within the
range restricted by eqn (74), is not the required one which should satisfy the physical
restraints (18) and (19). Hence, in order to seek the non-singular solution we work out here
a numerical procedure to arrive at the eigenvalue s and the corresponding eigensolution
simultaneously. To begin with, we fix the stress potential ®, at 8 = 0 as unity, namely,

0,0) = 1. (75)

This condition can be realized by formally implementing some normalization procedure.
Thus, eqn (52) and the boundary conditions (70) constitute a new two-point boundary-
value problem with s and ¢"(0) being unknown.

In seeking the eigenvalue s and the initial value ®@;(0) that satisfy the boundary
conditions @, (n) = O (n) = 0, it is found that the solution property is quite complicated
and very sensitive to initial iteration values. Actually, in order to obtain the eigenvalue s
and Of(0) we separately plot the root-curve of Oy(n) = F [5,05(0)] =0 and
O5(n) = F,[5,05(0)] = 0 for a given set of n, k and . The intersection of the two curves
give us the eigenvalue s and ©(0) required. With this manner the two-point shooting
problem can be decomposed into a one-point one. Once a solution is obtained for the given
set of material constants, others can be proceeded by imposing a perturbation, for instance,
with one or two thousandths of variation, to material constants and starting from the
previous solutions as the initial iteration values.

Figures 1-3 illustrate some typical results of stress and strain distributions. In these
figures the angular variations of stresses and strains are shown with k =22, =0, f =0
and p = 1.52, but n = 1, 2, 3, respectively. Correspondingly, the eigenvalues that are sorted
out with the presented approach are s, = 4.7676, s, = 3.4466 and s, = 3.0766, respectively.
Note that in order to compare the variations of stress and strain in the same figures, we
introduce scale factors in plotting. Evidently, this does not distort the required information
since in angular distributions the physical quantities, whether stresses or strains, make sense
merely with respect to their relative magnitudes. From Figs 1-3 we can see that the relative
magnitude of g,, and o4, (and correspondingly ¢,, and gy) will substantially change with the
increasing of n. That is, o,, is smaller than o, at first and then closes to g, with the
increasing of » and finally becomes larger than o4, while # is larger than a certain value
(this value depends on material constants £ and u). Another noteworthy phenomenon is

—~~ 15} 8,9(9) n=1-M=1.52,k=2_2
N L
2 19 & (0)
hed -
-
2 05
G b .
—~ 00 N (9)
™ ) N4 o @\ DT
5, ©) )

S o5t u <\
: [ Ct=0, =0 N
z 0l B
6 s =44676

15 _
0 n/2 P

0

Fig. 1. The angular distributions of stresses and strains when # =1, u = 1.52, k=22, a = 0 and
B = 0. In this case the eigenvalue s = 4.4676.
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20
% (6) % (6) n=2,u=152 k=2.2
o~ L S -.‘2_ J
9 10 - .
:: arr(e)
=)
(i):‘
e
6:‘
a=0 =0
.20 R
0 nl2 T

6

Fig. 2. The angular distributions of stresses and strains when n =2, p=1.52, k=22, ¢« = 0 and
B = 0. In this case the eigenvalue s = 3.4466.

20
L U%(e) n=3, u=1.52 k=2.2
H 10k
S
&)
5 0
&)
& -10
s =3.0766 R, o ()
«=0,p=0
-20 .
0 /2 7
0

Fig. 3. The angular distributions of stresses and strains when n =3, p =152, k=22, 2 =0 and
B = 0. In this case the eigenvalue s = 3.07655.

that the angular distribution of stresses and strains exhibits approximately a quasi-periodic
pattern and is generally different from that of the HRR problem.

Figures 4-6 illustrate the angular variation fields of stress whenn =3,k = 2.2, a = 0,
B =0, but u=0, but p=1.28, 1.58 and 1.78, respectively. Here, the eigenvalues are
51 = 2.9630, 5, = 3.1061 and s; = 3.2171, respectively. It should be pointed out that in the
first approximation of the asymptotic analysis & and u always appear in the combination
of u/k+1, therefore the increasing of u is equivalent to the correspondingly decreasing of
k and vice versa. A further analysis to the results demonstrated in Figs 4-6 may make one
find that the variation of the angular stresses distribution with the increasing of the damage
parameter g is similar to that with the increasing of x. In fact, both # and p play the role to
soften the material.

Figure 7 indicates the angular variation of Q%(#) with n = 1,2 and 3, respectively, while
k=22 u=1.52 0=0and B =0 and Fig. 8 shows the angular variation of Q°#) with
n=3 k=22 2=0and =128, 1.58 and 1.78, respectively. Clearly, from (60) one is
shown that Q°(6) actually denotes the angular variation portion of (1 —w), which represents
a measure of an undamaged media in some way. Since in all the computations we take the
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og () When u = 1.28, s = 2.9630
Gge ©) When u = 1.58, 5 = 3.1081
0o, @ When u = 1.78,5=3.2171

14

12
0

Fig. 4. The angular distributions of stress g,,(8) whenn = 1,k = 2.2, = 0and f = 0, whilep = 1.28,
1.58 and 1.78, with correspondingly the eigenvalue s = 2.9630, 3.1061 and 3.2171, respectively.

15
-------- o, 6) When i =1.28, s=2. 9630
- 7T o, ) whenp=1.58, s=3. 1061
L s o, @) wheny=1.78, s=3.2171
M\
St
l\:..
S
~— LY
bE 0 \\ ’l
I N ,/{
5}k T
-10 n=3,k=2.2,(1=0,ﬂ=0
0 nl2 7
0

Fig. 5. The angular distributions of stress ¢,.(6) whenn = 1,k = 2.2,¢ = 0and = 0, while u = 1.28,
1.58 and 1.78, with correspondingly the eigenvalue s = 2.9630, 3.1061 and 3.2171, respectively.

parameters x = 0 to f§ = 0, this implies that the damage is essentially related to the equi-
valent stress (). Through the results shown in Figs 7 and 8 one can easily see that the
most severe damage primarily occurs at the place where § = = or 6 ~ « (say, in the case
shown in Fig. 7forn =1,k = 2.2, u = 1.52, « = 0 and = 0). As the evolution of damage
will finally lead to the full failure (rupture) of mesoelements of a material, the damage field
has a substantial effect on the stress field of the tip. Besides, even though our analysis is
performed to a stationary crack problem, it is to be expected that the distribution of damage
obtained is able to supply additional hints in explaining some sophisticated experimental
observations such as the variations of the direction of a crack extension, etc.

Note that all the results shown above exhibit that there always exist s > 2 and v > 0,
the letter of which indicates that

limé&, = 0. (76)

Since the eigenvalue s actually designates the rate of stresses tending to vanishing when the
crack tip is approached, one could, although implicitly, find an interesting comparison with
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that of HRR field, where stresses approach a singularity field with the order of 1/(n+1) at
the crack tip.

It should be pointed out that the parametric distribution of eigenvalue s with the
material constants n, k and g is not uniformly continuous, namely, for some value of these
material constants the eigensolution may not exist and discussion regarding this problem
has been fulfilled in another work that will be disclosed soon. Besides, like that in the
computation of the HRR problem, for some specific values of n, k and u the third order
derivative of eqn (52) at a certain locus changes greatly and therefore the computations
become stiff. In this situation one should use either smaller stepsize, if adopting a con-
ventional Runge-Kutta scheme (for instance, the stepsize of 7/12,000 is recommended in
this paper), or some techniques for dealing with stiff problems.

5. CONCLUDING REMARKS

There have been several ways of explaining and erasing the anomaly of stress singularity
at a crack tip : introducing the yielding surface of plasticity and, for instance, considering
the local large strains at the tip or using the concept of damage, etc. In studying the
interaction between crack and damage in the field near the crack tip, one may of course
start from continuum damage mechanics and use pure numerical approaches (say, finite
element methods) to analyze it. However, numerical procedures do not work so easily
because of the localization of damage at its critical points. The problem is no longer elliptic
and a local bifurcation of the solution may occur. Thus, in terms of a combined approach
of fracture and damage mechanics we employ an analytical procedure to obtain the locally
asymptotic structure of the solution that applies to the regime very near the crack tip.
Within this regime the damage effect dominates the local zone. According to the solution,
stresses vanish with r — 0 due to the damage relaxation to them. Consequently, no stress
singularity occurs and stresses approach zero according to r*~?, where s is a positive
eigenvalue larger than 2.

It should be pointed out that in this paper we use a total deformation theory and the
infinitesimal strain description. This starting point can be further improved since in the
very close region to the crack tip, where damage is extremely severe, the small deformation
description is not exactly sound. Nevertheless, the results at which we have arrived provide
a new, approximately and asymptotically, of course, analytic representation for the crack
tip behavior and allow one to get a step toward the understanding of this problem in a
different way.

To accurately determine the amplitudes of stress or strain, which are time and loading
dependent, one must, as stated previously, know the global solution of the problem under
study. As a global analytical solution is actually impossible to attain, one has to use some
numerical or approximate methods to solve this problem. For instance, the approaches
proposed in some previous studies in dealing with HRR or RR field (e.g. Bassani and
McClintock, 1981 ; Ainsworth and Budden, 1990; Bassani et a/., 1989 and Busso ef al.,
1995) can be employed to give some hints and this work is being carried out by us through
conducting a pure numeric analysis. Particularly, since there is no singularity at the crack
tip the J-integral cannot be invoked in this case.

From the result obtained in Part I (Lee et a/., 1996) and that in this context, we can
have such a pattern: in the small damage region around a crack tip, the HRR type
singularity still dominates the solution with damage effect as only a perturbation and in the
large damage region where the crack tip is quite approached, the damage controls the tip
behavior and thereby no stress singularity occurs. Thus, stresses are expected to distribute
in this way : at the crack tip stresses vanish and then increase with the increasing of » and
finally they reach their corresponding maximum at some position from the crack tip. After
that, stresses decrease with the increasing of r approximately according to the law predicted
by HRR solution or the one incorporated with the damage influence. Thus, the “singularity”
of stress, in correspondence to the common engineering notation, may be understood as
finite in this sense. The damage distribution, on the other hand, reaches its critical state of
damage at the crack tip. And apart from the crack tip, a mesovolume element of the
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medium persists in a partly damaged state. As the loading, or the time, continues to increase
and the damage constantly accumulates until this element fully fails. Then the crack
commences to grow and the problem becomes a growing crack one to which our analysis
does not apply.
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